Significance of Steric Effect in the Heterolysis of Carbon-Carbon σ Bond in Ionically Dissociative Hydrocarbons Atsushi MIYABO, Toshikazu KITAGAWA, and Ken'ichi TAKEUCHI* Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606 The standard free energies of heterolysis (ΔG°_{het}) of a carbon-carbon σ bond in sterically congested hydrocarbons R_{1} – R_{2b-j} and a related derivative R_{1} – R_{2a} in DMSO and sulfolane at 25 °C are about 40 kJ/mol smaller than expected from Arnett's master equations, indicating the importance of steric factor in the heterolytic cleavage. Heterolysis of a carbon-carbon σ bond to form a carbocation and a carbanion is of interest from thermodynamic¹⁾ and mechanistic²⁾ points of view. Meanwhile, Arnett and his coworkers proposed an empirical relationship (master equation)³⁾ to correlate heterolysis enthalpies with pK_R +'s of cations and $pK_a(RH)$'s of anions. Previously, we found that the hydrocarbon R_1 – R_{2c} (Fig. 1) heterolyzes into a stable carbanion R_1 ⁻⁴⁾ and tropylium ion in DMSO.⁵⁾ In the present study, we report the preparation and heterolysis of eight new ionically dissociative hydrocarbons R_1 – $R_{2b,d-j}$ and a related bromo derivative R_1 – R_{2a} in DMSO and sulfolane. Determinations of the standard free energies of heterolysis (ΔG°_{het}) for the C–C σ bond have shown that the steric effect plays a significant role in facilitating the heterolysis as well as the thermodynamic stabilities of cations and anions. Fig. 1. Structure of covalent hydrocarbon R_1 – R_{2c} . The position indicated by a dot denotes the carbon forming the C-C σ bond. Compounds R_1-R_{2a-j} were prepared by mixing a deep green solution of $R_1^-K^+$, generated from R_1H by treatment with t-BuOK in THF, and an equimolar amount of $R_2^+ClO_4^-$ (or BF $_4^-$) in THF-MeCN under argon in the dark. Evaporation of the solvent and subsequent extraction with chloroform or benzene afforded R_1-R_{2a-j} as reddish-orange solids in almost quantitative yields. Compounds R_1-R_{2a-f} were purified further by TLC (SiO₂, benzene-hexane (1:1)) and reprecipitation (CH $_2$ Cl $_2$ -pentane) to give orange powders.⁸⁾ The structure assignment of the covalent products is based on ${}^{1}H$ NMR in CDCl₃.⁹⁾ Compounds $R_{1}-R_{2a-j}$ showed a finely split triplet ($J \approx 1.4$ Hz) or a broad singlet at ≈ 6.6 ppm corresponding to the H-6 proton (see Fig. 1). Signals in the olefinic region indicated that the combination of R_{1}^{-} with R_{2a}^{+} , R_{2b}^{+} , R_{2d}^{+} , R_{2g}^{+} , or R_{2j}^{+} gave two isomers, in which R_{1}^{-} is connected to different positions in the seven-membered ring of the cation.¹⁰⁾ Among aromatic proton signals a doublet (1 H, J = 7.8 - 9.3 Hz) observed at 6.5 - 6.6 ppm is notable. This signal can be assigned most probably to the highly shielded H-7 proton. Table 1. The Concentration Equilibrium Constants (K_{het}) and Standard Free Energies of Heterolysis (ΔG°_{het}) for Ionically Dissociative Covalent Compounds R_1 – R_{2a-i} in DMSO and Sulfolane at 25 °C | Compound | $10^6 K_{\text{het}} (= [R_1^-][R_2^+]/[R_1 - R_2])/M$ | | | | | | $\Delta G^{\circ}_{\text{het}} (=-RT \ln K^{\circ}_{\text{het}})^{c}/\text{kJ mol}^{-1} \text{ Predicted } \Delta H_{\text{het}}^{d})$ | | | |---------------------|--|-----|-------------------------|-------|---|-------|--|----------------------|------| | |] | ISO | Sulfolane ^{b)} | | | DMSO | Sulfolane ^{b)} | kJ mol ⁻¹ | | | $R_{1}-R_{2a}^{a)}$ | 0.458 | ± | 0.017 | | | | 36.2 ± 0.1 | | 83.0 | | $R_{1}-R_{2b}^{a)}$ | 1.09 | ± | 0.43 | | | | 34.3 ± 1.0 | | 82.2 | | $R_{1}-R_{2c}$ | 0.863 | ± | 0.078 | | | | 34.7 ± 0.2 | _ | 82.2 | | $R_{1}-R_{2d}^{a)}$ | 1.06 | ± | 0.24 | 0.174 | ± | 0.039 | 34.2 ± 0.6 | 38.7 ± 0.6 | 81.2 | | $R_{1}-R_{2e}$ | 1.04 | ± | 0.04 | 0.199 | ± | 0.059 | 34.2 ± 0.1 | 38.4 ± 0.8 | 80.8 | | $R_{1}-R_{2f}$ | 2.20 | ± | 0.42 | 1.41 | ± | 0.27 | 32.4 ± 0.5 | 33.5 ± 0.5 | 80.1 | | $R_{1}-R_{2g}^{a)}$ | 6.66 | ± | 0.90 | 1.40 | ± | 0.08 | 29.6 ± 0.3 | 33.5 ± 0.1 | 79.6 | | - | 258 | ± | 6 | 13.8 | ± | 3.8 | 20.6 ± 0.1 | 28.0 ± 0.7 | 77.1 | | $R_{1}-R_{2i}$ | 159 | ± | 55 | 22.2 | ± | 11.3 | 22.0 ± 0.9 | 27.0 ± 1.4 | 76.8 | | $R_{1}-R_{2j}^{a)}$ | 124 | ± | 20 | 26.0 | ± | 17.3 | 22.4 ± 0.4 | 27.0 ± 2.0 | 76.8 | a) Mixture of two isomers. b) Contains 5% (v/v) of 3-methylsulfolane. c) $K^{\circ}_{het} = K_{het} \times (\gamma \pm)^2$. d) Predicted by using the master equation in Ref. 3. When R_1-R_{2a-j} was dissolved ($10^{-5}-10^{-4}$ M) in polar solvents such as DMSO or sulfolane, $^{11)}$ the deep green color of R_1^- (λ_{max} (DMSO or sulfolane) 697 nm, log ϵ 5.18) developed. The thermodynamic equilibrium constants (K°_{het}) were calculated by using equation $K^\circ_{het}=K_{het}\times(\gamma\pm)^2$, where K_{het} is the concentration equilibrium constant ($[R_1^-][R_2^+]/[R_1-R_2]$) and $\gamma\pm$ the mean activity coefficient obtained by the Debye-Hückel limiting law equation. The thermodynamic equilibrium constant is essentially constant for different concentrations ranging from 10^{-5} to 10^{-4} M, indicating reversible heterolysis to produce R_1^- and R_2^+ . In sulfolane, a small amount of radical R_1^* (0.5 – 11%, λ_{max} (DMSO) 551 nm, log ϵ 5.04) formed presumably owing to impurities in sulfolane; its concentration was added to that of R_1^- for the calculation of K_{het} . Although the concentration of $\mathbf{R_1}^-$ showed a small temperature dependence in DMSO, gradual decomposition of $\mathbf{R_2}^+$ did not allow accurate determination of $\Delta H^\circ_{\text{het}}$ and $\Delta S^\circ_{\text{het}}$. Table 1 summarizes the K_{het} and $\Delta G^\circ_{\text{het}}$ (=-RT ln K°_{het}) for $\mathbf{R_1}$ - $\mathbf{R_{2a-j}}$ at 25 °C. 12) Recently, Arnett and his coworkers determined the heats of reactions of various carbocations with carbanions in MeCN or sulfolane, and found that the enthalpy of heterolysis of a C-C σ bond can be expressed by "master equations" consisting of linear combination of p K_R +'s of carbocations and p K_a (RH)'s of carbanions.³⁾ It was uncertain, however, if these equations could be applied to the present system, since they were derived by using sterically unencumbered ions. For secondary cations: $\Delta H_{\text{het}} (\text{kcal / mol}) = 13.18 - 0.324 (pK_R+) + 1.307 (pK_a)$ (1) For tertiary cations : $\Delta H_{\text{het}} (\text{kcal / mol}) = 8.895 - 0.648 (pK_R+) + 1.294 (pK_a)$ (2) Figure 2 shows the plot of ΔG°_{het} values of Table 1, together with the lines expressed by Eqs. 1 and 2 for ΔH_{hef} . The tropylium ions are categorized to secondary cations; therefore, our ΔG°_{het} values should be assessed by using Eq. 1. Direct comparisons of ΔG°_{het} values and ΔH_{het} ones seem to be reasonable since ΔS°_{het} values have been found to be very small and ΔG°_{het} values approximate to ΔH_{het} ones within 4 kJ/mol in Arnett's system. 13,14) As shown in Fig. 2, ΔG°_{het} values for R_1-R_{2a-i} are smaller than those expected from Eq. 1 by approximately 40 kJ / mol (predicted ΔH_{het} values are shown in Table 1). This discrepancy is most probably ascribed to steric congestion in the hydrocarbons composed of R_1^- and R_2^+ . A similar steric effect is naturally expected to arise from bulky substituents in the cationic moiety. This was indeed observed when tri-t-butylcyclopropenylium ion (p K_R + 6.5¹⁵) in 50% aq. MeCN) and phenylmalononitrile anion (p K_a (RH) 4.24¹³)) were mixed in MeCN in a cell sealed under vacuum and K^o het was determined; 16) the ΔG^o het was 16.3 kJ/ Fig. 2. Plot of ΔG°_{het} on the master equation scale: open circle, $\mathbf{R_{1}}$ – $\mathbf{R_{2a-j}}$ in DMSO; closed circle, $\mathbf{R_{1}}$ – $\mathbf{R_{2a-j}}$ in sulfolane; open square, tri-t-butyl-cyclopropenylium ion + phenylmalononitrile ion (in MeCN); closed square, trimethylcyclopropenylium ion + phenylmalononitrile ion (in MeCN). All energy terms are converted to kJ/mol. mol, which is smaller than the ΔH_{het} calculated from Eq. 2 by \approx 25 kJ / mol (see Fig. 2). In contrast, according to Arnett's data, $^{13)}$ the ΔG°_{het} to form less hindered trimethylcyclopropenylium ion and phenylmalononitrile ion in MeCN has been nicely accommodated to the line of Eq. 2 (see Fig. 2). Thus, besides the electronic stabilities of generated carbocations and carbanions, the steric congestion has been shown to play a significant role in facilitating C-C σ bond heterolysis of ionically dissociative covalent compounds. The importance of steric congestion in lowering the homolytic dissociation energy for a C–C σ bond has been pointed out by Rüchardt on the basis of systematic studies.¹⁷⁾ This work was supported by Grant-in-aid for Scientific Research on Priority Areas (No. 01648002 and 03214102) from the Ministry of Education, Science and Culture. ## References - 1) For example, see: E. M. Arnett and K. E. Molter, *Acc. Chem. Res.*, **18**, 339 (1985) and references cited therein. - 2) N. J. Pienta, R. J. Kessler, K. S. Peters, E. D. O'Driscoll, E. M. Arnett, and K. E. Molter, J. Am. Chem. Soc., 113, 3773 (1991). - 3) E. M. Arnett, K. Amarnath, N. G. Harvey, and J.-P. Cheng, J. Am. Chem. Soc., 112, 344 (1990) and references cited therein. - 4) R. Kuhn and D. Rewicki, Angew. Chem., 79, 648 (1967); the p $K_a(RH)$ is the relative value in DMSO/acid or base using 9-cyanofluorene as a standard. - 5) K. Okamoto, T. Kitagawa, K. Takeuchi, K. Komatsu, and K. Takahashi, J. Chem. Soc., Chem. Commun., 1985, 173. - 6) K. Okamoto, K. Takeuchi, K. Komatsu, Y. Kubota, R. Ohara, M. Arima, K. Takahashi, Y. Waki, and S. Shirai, *Tetrahedron*, 39, 4011 (1983). - 7) K. Komatsu, H. Akamatsu, and K. Okamoto, Tetrahedron Lett., 28, 5889 (1987). - 8) Purity of R₁-R_{2a-f} was confirmed by satisfactory elemental analysis and ¹H NMR. On the other hand, R₁-R_{2g-j} were not stable enough to be purified by TLC or reprecipitation. Their purity (contains <5 % THF by weight) was checked by ¹H NMR. - Previously reported ¹H NMR data for R_1 – R_{2c}^{5}) were revised as follows (CDCl₃, 300 MHz): δ 8.84 7.02 (m, 37 H, aromatic and olefinic protons), 6.592 (d, 2 H, H–4, J = 3.0 Hz), 6.591 (d, 1 H, H–7, J = 8.4 Hz), 6.52 (t, 1 H, H–6, J = 1.4 Hz), 6.06 (dd, 2 H, H–3, J = 9.3, 3.0 Hz), 5.21 (dd, 2 H, H–2, J = 5.7, 9.3 Hz), 2.72 (t, 1 H, H–1, J = 5.7 Hz). ¹³C NMR (CDCl₃, 25 MHz) δ 146.8 117.5 (aromatic and olefinic carbons), 58.2 (s, C–5), 47.8 (d, C–1). - 10) Less hindered 4-substituted products were major. For $\mathbf{R_{2a}}^+$, $\mathbf{R_{2b}}^+$, $\mathbf{R_{2d}}^+$, $\mathbf{R_{2g}}^+$, and $\mathbf{R_{2j}}^+$, the fractions of the major products, determined by integration of H-1 signals, were 55, 60, 65, 70, and 50%, respectively. The single product from $\mathbf{R_{2i}}^+$ is due to the strained structure of cycloheptatriene moiety compared with that from $\mathbf{R_{2i}}^+$. - 11) 3-Methylsulfolane (5% by volume) was added to prevent sulfolane from freezing. - 12) The behavior as a weak electrolyte was also demonstrated for R_1-R_{2c} , R_1-R_{2e} , and R_1-R_{2f} by electric conductivity measurement in DMSO ($10^{-5}-10^{-4}M$) at 25 °C under argon. - 13) E. B. Troughton, K. E. Molter, and E. M. Arnett, J. Am. Chem. Soc., 106, 6726 (1984). - As mentioned earlier, accurate determination of the $\Delta S^{\circ}_{\text{het}}$ of our system was difficult. We are trying to obtain more reliable data by using improved techniques. - 15) J. Ciabattoni and E. C. Nathan, III, J. Am. Chem. Soc., 91, 4766 (1969). - 16) Measured at $3 6 \times 10^{-4}$ M. - 17) C. Rüchardt and H.-D. Beckhaus, Angew. Chem., Int. Ed. Engl., 19, 429 (1980). (Received January 21, 1992)